Arachidonic acid formed by peroxisomal beta-oxidation of 7,10,13,16-docosatetraenoic acid is esterified into 1-acyl-sn-glycero-3-phosphocholine by microsomes.

نویسندگان

  • S P Baykousheva
  • D L Luthria
  • H Sprecher
چکیده

Peroxisomal beta-oxidation of linoleic acid and arachidonic acid was depressed when 1-palmitoyl-sn-glycero-3-phosphocholine and microsomes were included in incubations. This reduction was due to the esterification of the substrate into the acceptor by microsomal 1-acyl-sn-glycero-3- phosphocholine acyltransferase. The first cycle of the beta-oxidation of 7,10,13,16-docosatetraenoic acid was independent of 1-acyl-sn-glycero-3-phosphocholine and microsomes. However, when arachidonate was produced it was esterified rather than serving as a substrate for continued beta-oxidation. When arachidonate and linoleate were incubated with peroxisomes alone, 2-trans-4,7,10-hexadecatetraenoic acid and 2-trans-4-decadienoic acid were the respective end products of beta-oxidation. 2-Oxo-8,11-heptadecadienone, a catabolite produced from linoleate, was most likely a nonenzymatic decarboxylation product of 3-oxo-9,12-octadecadienoic acid. In addition to the termination of beta-oxidation by microsomal-peroxisomal communication, our results with linoleate and arachidonate suggest that the reaction catalyzed by 2-trans-4-cis-dienoyl-CoA reductase is the control step in double bond removal. In addition, the beta-ketothiolase step may play a regulatory role in the peroxisomal beta-oxidation of linoleate but not arachidonate or 7,10,13,16-docosatetraenoic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peroxisomal-microsomal communication in unsaturated fatty acid metabolism.

The addition of 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC) to peroxisomes decreased the production of acid-soluble radioactivity formed by beta-oxidation of [1-(14)C]arachidonate due to substrate removal by esterification into the acceptor. This peroxisomal-associated acyl-CoA:1-acyl-GPC acyltransferase activity was due to microsomal contamination. The production of acid-soluble radioactiv...

متن کامل

Regulation of the biosynthesis of 4,7,10,13,16-docosapentaenoic acid.

It is now established that fatty acid 7,10,13,16-22:4 is metabolized into 4,7,10,13,16-22:5 as follows: 7,10,13,16-22:4-->9,12,15, 18-24:4-->6,9,12,15,18-24:5-->4,7,10,13,16-22:5. Neither C24 fatty acid was esterified to 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC) by microsomes, whereas the rates of esterification of 4, 7,10,13,16-22:5, 7,10,13,16-22:4 and 5,8,11,14-20:4 were respectively 1...

متن کامل

Arachidonic acid mobilization among phospholipids in murine mastocytoma P-815 cells: role of et her4 in ked phospholipids

Abrtract The ethanolamine-containing glycerophospholipids, choline-containing glycerophospholipids, and phosphatidylinmitol fractions are major sources of arachidonic acid in murine mastocytoma P-815 cloned cells. The choline-linked fraction contained high arachidonic acid contents in 1-0-alkyl-2-acyl(18%) and 1,2-diacyl-sn-glycero-3-phosphocholine (ll%), with smaller amounts in l-O-alk-l'-enyl...

متن کامل

Turnover of eicosanoid precursor fatty acids among phospholipid classes and subclasses of cultured human umbilical vein endothelial cells.

Using cultured human umbilical vein endothelial cells, in which phosphatidylcholine (PC) is equally pulse-labelled by various eicosanoid precursor fatty acids (EPFAs), we have studied the remodelling of EPFAs among the phospholipid classes and subclasses with and without activation, and the relationship of this remodelling process to the selective release of arachidonic acid (AA) by phospholipa...

متن کامل

Regulation of the biosynthesis of 4,7,10,13,16,19-docosahexaenoic acid.

The synthesis of 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) requires that when 6,9,12,15,18,21-tetracosahexaenoic acid (24:6(n-3)) is produced in the endoplasmic reticulum, it preferentially moves to peroxisomes for one cycle of beta-oxidation rather than serving as a substrate for membrane lipid synthesis. Both 24:6(n-3) and its precursor, 9,12,15,18,21-tetracosapentaenoic acid (24:5(n-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 28  شماره 

صفحات  -

تاریخ انتشار 1994